
Search Engine Refactoring tool for Code
Clone Detection of Static and Dynamic

WebPages

S.Angel Msc(SE).,MCA.,Mphil.,ME(CSE).,.
 Research Scholar

 Department of Computer Science and Engineering
 Bharathiar university- Coimbatore.

 Email:angelshanmugam@gmail.com

ABSTRACT
Today cloning of codes of an authorized person leads a

positive approach. But the code cloning is done by
unauthorized person leads a negative approach. In the recent
years, many clone detection tools have been proposed. It
produces an over whelming volume of simple clones of data
or structure [3]. Code clone detection the content similarity
between the programs or webpages. An attempt is made to
design a method called “CCDT Code Clone Detection
Technique” for both static and dynamic web pages. It is based
on levenshtein’s approach. This method comprises some steps
like, parsing & analysis, tree construction, code similarity
measure and clone detection. Experiments are carried out with
open source websites and WebPages created by some
volunteers. Experimental results are recorded and are showing
the better detection rate.

Keywords
Refactoring, clone detection, code clone, static and dynamic
pages, DOM tree construct, Levenshtein distance algorithm.

1. INTRODUCTION
Refactoring is a process of transforming the program without
affecting the behavior and semantics and to improve the
quality [24]. In other term code refactoring is the process of
restructuring the existing computer code by changing the
factors without affecting its external behavior [24]. The
refactoring process also involves in the removal of duplication
and simplification of unclear code[34]. The refactoring
process offers many advantages such as improved code
readability and reduced complexity to improve source code
maintainability, creation of expressive internal structure [24].
The maintainability and extensibility are the two major
benefits of refactoring. But the other side of code refactoring
is called code clone. It is about the similarity of codes. Code
clone can be defined as a similar program or code structure of

considerable size and significant similarity [1]. Section 2
provides the literature review. In section 3 the proposed
methods is discussed. Experimental results are recorded in
section 4 and section 5 concludes the work.

2. LITERATURE REVIEW
The literature survey shows that cloning is an active area of
research [1]. Many refactoring and clone detection tools and
approaches have been proposed. A literature survey has been
made to have a knowledge on code clone detection and its
techniques[3]. Daniel. B [5] proposed a techniques and
described some examples of refactoring such as renaming
program element to be better convey its meaning, replacing
field references splitting large classes etc., many other code
refractor techniques have been proposed for code or software
systems[2,4,6,7,8,9,10,15,16,17,11,12,20,13,14,19,28,22,24,2
5,26,27,28,29,30,31,32, 33].

3. PROPOSED METHOD: (CCDT)CODE
CLONE DETECTION TECHNIQUE
A approach to clone mining for Web applications has been
proposed together with a prototype implementation for
dynamic web pages. The proposed methods analyze the page
structure, implemented by specific sequences of HTML tags,
and the content displayed for both dynamic and static pages.
Moreover, for a pair of dynamic web pages we also consider
the similarity degree of their source is considered. The
similarity degree can be adapted and tuned in a simple way
for different web applications in one- to- many. The proposed
method called “Code Clone detection technique (CCDT) aims
the detection of clones on both static and dynamic web pages.
The proposed model consists of 4 phases namely content
feeding, parsing and analysis refactoring (code extraction,
DOM tree and similarity calculation), clone deduction as
shown in fig.

 Code Extraction

Input Content Parsing & Clone percentage of

Website Feeding analysis DOM Tree Deduction Cloning

 Construct

 Similarity

 Measure

 Figure 1:Proposed clone deduction diagram

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 715

IJSER © 2015
http://www.ijser.org

IJSER

The algorithm of the proposed methodology based on
levenshtein distance measure is given below

3.2 Description
3.2.1 Input and content extraction
In the initial step, WebPages are read. The given input
WebPages is transferred to the next phase to extract the
contents. Web page are extracted one by one and the content
(or) pieces of webpage code and extracted sequentially.
Further these contents are forwarded to parse analysis [2].

3.2.2 Parsing and analysis
During this phase, the HTML parsing module accesses the
HTML as tokens. It gives one token at a time, much as a file
handler which gives one line at a time from a file. The HTML
is tokenized from the input file as a string. The tokenize
decodes the entities in attributes [35].

3.2.3 Tree construction
The tokenizes passes the output to construct tree. The data
instances of the same type have the same path from the root in
the DOM tree of the input page according to the page
generation model. This method focuses on all levels of nodes.
It starts from the root node <HTML>. It uses multiple string
arguments approach to the first level child node [35].

3.2.4 Similarity Measure
The next level of the method is to computes the similarity
measures using the levenshtein distance approach. It is based
on matrix. A matrix is reserved to hold the distance between
all prefix of the first string and all prefix of the second
Afterwards computation is done on values of the matrix in a
dynamic program. Fashion and them the distantness but the
two full strings can be measure [36].

3.2.5 Clone Detection
The last step of the stage of the method is to detect the clone
values from the outcome of the previous step. Clone detects
values (%) and clone index values are identified. The
experimental results are discussed in the next section. Path
from the root in the DOM tree of the input page according to
the page generation model. This method focuses on all levels
of nodes. It starts from the root node <HTML>. It uses
multiple string arguments approach to the first level child
node [4].

4. EXPERIMENTAL RESULTS &
DISCUSSION
The proposed refactoring techniques for clone detection have
been implemented in C# and experimental results are
observed. The following sources shown in table 1 and table 2
are used for the experiments.

Table 1 : The HTML files analyzed in the experimental

File ID File Name KB

1 \Index.html 8.07

2 \Special list \main frame.html 0.411

3 \Special list \Special list.html 1.75

4 \Special list text.html 2.30

5 \Special list \title.html 0.363

6 \Novita \Brugaletta.html 6.57

7 \Novita \CalendariotarNA.html 10.6

8 \Novita \ text.html 3.30

9 \Title.html 0.409

10 \Forum \main frame.html 0.506

11 \Forum \taxt.html 0.237

12 \Forum \title.html 0.4

13 \Common frame left.html 4.78

14 \Common \bottom frame.html 3.21

15 \Main frame.html 0.494

16 \irctc.html 0.46

17 \just dial.html 0.58

18 \Chisiamo \text.html 3.24

19 \Chisiamo \title.html 0.407

20 \Cerca.html 1.87

21 \Cerca \main frame.html 0.501

22 \Cerca \text.html 27.3

23 \Cerca \title.html 0.4

24 \Honda.html 0.48

25 \Swift.html 0.24

26 \TNEB.html 0.20

27 \Redbus.html 0.44

28 \NDTV.html 0.90

29 \Default.html 0.96

30 \Sample.html 0.79

31 \Naukri.html 0.125

32 \VAT.html 0.52

33 \Live cricket.html 0.269

34 \naukri.html 0.125

Table 2 : Real time HTML files created by the volunteers

File ID File Name KB

1 \A1.html 0.5

2 \A2.html 0.2

3 \B1.html 0.7

4 \B2.html 0.4

5 \C1.html 0.2

6 \C2.html 0.3

7 \C2.html 0.1

8 \C3.html 0.20

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 716

IJSER © 2015
http://www.ijser.org

IJSER

9 \D1.html 0.12

10 \D2.html 0.10

11 \E1.html 0.7

12 \E2.html 0.4

The results of two files from the above mentioned table are
shown below in table 3. For instance the results of two files
namely Honda.html and SuzukiSwift.html are listed in table1.
It lists the tag index and clone detection value for both files
which are taken from open sources as mention in table 1.

Table 3 : Tag index and clone detection value for two

files (Honda, Swift)

F1 : Honda.html F2 : Swift.html

Tags Clone Tags Clone
index detection index detection

 value value

doc type 1 doc type 1

Html 1 html 1

Head 1 head 1

Meta 5 mea 2

Title 1 File 1

Script 55 Link 12

Script 55 Link 1

Link 8 Body 1

Style 3 Div 12

Body 1 Ul 6

Form 1 Li 48

Div 153 A 59

Input 44 A 59

Input 43 Sript 14

Div 153 Script 10

Input 44 Ins 10

Input 43 Ins 5

A 288 Fname 5

Img 153 H1 1

Select 1 H2 2

Option 1 P 32

Strong 46 P 31

Span 74 Img 2

Table 30 B 11

Tbody 30 B 10

Tr 78 H3 9

Td 166 Strong 2

Br 89 Br 42

Ul 38 Br 30

Li 204 Table 1

Li 73 Tbody 1

Form 1 Tr 6

Div 153 Td 23

Input 44 Td 1

Input 43 Ui 1

A 288 File 6

Img 153 Small 8

Select 1 Small 4

Option 1 Form 1

Strong 46 Input 6

Table 30 Lable 2

Tbody 30 Lable 1

Tr 78 Text area 1

Td 166 No script 1

H2 1 - -

Em 1 - -

Em 1 - -

Font 2 - -

Font 2 - -

H4 1 - -

Embed 1 - -

B 2 - -

B 1 - -

Map 1 - -

Area 3 - -

H3 3 - -

Fig. 2 Visualizes clone detection value of the above
mentioned files. From the result, it is observed and calculated
the clone detection value. This result shows the html tags and
index value of first file (Honda.html) and second file
(Swift.html). About 26.1% of code clones are identified from
the two files.

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 717

IJSER © 2015
http://www.ijser.org

IJSER

Figure 2: Comparison of clone detection value of two files (F1 : Honda, F2 : Swift).

In Fig. 3 The upper portion of the screen shows the individual clone detection of F1 and F2. Lower portion of the screen shows the
comparison of clone detection value of two files.

Figure 3: Comparison chart of clone detection on individual values (html tags / and index values).

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 718

IJSER © 2015
http://www.ijser.org

IJSER

Table 4: Tag index and clone detection value for two

files (TNEB, Redbus)

F3: TNEB.html F4 : Redbus.html

Tags Clone Tags Clone
index deduction index value

 value

doc type 1 doc type 1

html 1 Html 1

head 1 Head 1

Meta 1 Meta 2

Link 2 Title 1

Link 2 Link 4

Script 4 Link 3

Title 1 Script 21

Body 1 Script 18

Table 1 Body 1

Tbody 4 Div 100

Tr 18 Header 1

Td 53 Ul 6

Title 1 Li 73

Body 1 A 87

Table 4 A 85

Tbody 4 Span 77

Tr 18 Span 21

Td 53 Img 6

 Img 9 Br 1

 P 2 H3 1

 A 44 Section 2

 Font 1 H1 1

 Div 23 Label 15

 Span 27 Input 13

 Span 21 Input 11

 Form 1 Button 9

 Br 3 Aside 1

 Br 2 Footer 1

 Thead 1 H6 1

 Th 6 Sup 1

 Th 1 P 1

 Input 3 Fname 4

 Input 1 Noscript 2

 B 1 Noscript 1

 - - Table 4

- - Tbody 4

- - Tr 32

- - Td 179

- - Td 178

- - Th 27

- - Th 1

- - H2 2

Fig. 4 Visualizes clone detection value of the above mentioned files. From the result , the clone detection value is calculat ed. This
result shows the html tags and index value of F3 and F4. About 21.81% of code clones are identified in between two files (TNEB.html,
Redbus.html).

Figure 4 : Comparison of clone detection value of two files (F3 : TNEB, F4 : Redbus).

5

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 719

IJSER © 2015
http://www.ijser.org

IJSER

In fig. 5 the upper portion of the chart shows the individual clone detection of F3 and F4. The lower portion of the represents the
comparison of clone detection value of two files. This chart shows the individual clone detection value of F3 and F4. The below chart
shows the comparison of clone detection value of two files.

Figure 5: Comparison chart of clone detection on individual values (html tags / and index values).

Table 5: Tag index and clone detection value for two files
(A1.html , A2.html) created by voluntaries.

 F5:A1.html F6 : A2.html

Tags Clone deduction Tags Clone
index value index value

Html 1 Html 1

Head 1 Head 1

Title 1 Title 1

Body 1 Body 1

H1 1 H1 1

H2 1 H2 1

H2 1 H2 1

Left 1 Left 1

Ul 5 A 1

Li 4 B 5

A 1 B 5

B 1 B 4

B 1 - -

P 4 - -

P 1 - -

Div 1 - -

Fig. 6 Visualizes clone detection value of the above mentioned files that the result shows the html tags and index value of F5 and F6.
About 19.35% of code clones are identified between two files (A1.html, A2.html).

6

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 720

IJSER © 2015
http://www.ijser.org

IJSER

Figure 6: Comparison of clone detection value of two files (F5: A1, F6 : A1).

In fig. 7, the upper portion of the chart shows the individual clone detection of F5 and F6. The lower portion of the chart compares
the clone detection value of two files.

Figure 7: Comparison chart of clone detection on individual values (html tags / and index values).

7

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 721

IJSER © 2015
http://www.ijser.org

IJSER

4.1 Performance Measure
The performance of the proposed methods is based on
clone percentage and also time taken to detect the
clone. Table 6 lists the two measures for some files.

Table 6: Performance measure on clone percentage

 Clone percent (%)

 Static Dynamic

Name of the webpage(s) web web

pages pages

Default.html Net carry .html 100 40

Swift.html Net carry .html 33 27

Search.html Compile.asp 24 46

Code.html Sample.asp 29 70

Chart describes fig. 8 clone detection percentage of static and
dynamic web pages.

Percentage of Clone

Detection

120

100

80

60

40

Static web

20

pages

0

N
et

ca
rr

y
.h

tm
l

N
et

ca
rr

y
.h

tm
l

C
o

m
pi

le
.a

sp

Sa
m

pl
e.

as
p

Dynamic web

 pages

 Default.htmlSwift.SearchhtmlCode.html.html

Table 7 and Fig. 9 indicate the time measure of clone
detection in open source web pages.

Clone detection time
(in seconds)

0.6

0.5

0.4

0.3

0.2

Clone

0.1

0 detection time

N
et

ca
rr

y
.h

tm
l

N
et

ca
rr

y
.h

tm
l

Co
m

pi
le

.a
sp

Sa
m

pl
e.

a
sp

(in seconds)

 Default.htmlSwift.SearchhtmlCode. html.html

Figure 9: This chart measures clone detection time

(In seconds).

Table 8: Performance measure on clone percentage

 Clone percent (%)

 Static Dynamic
 web pages web pages

Name of the webpage(s)

B1.html A1.html 49 80

B2.html A2.html 67 55

VAT.html Compile.asp 58 93

C1.html Sample.asp 49 35

Table 8, 9 and Fig. 10, 11 give information about the clone
detection percentage of static and dynamic web page.

Figure 8: This chart measure comparison of
clone percentage.

Table.7: Performance measure to time taken of

clone detection

 Clone

Name of the webpage(s)
detection time

 (in seconds)

Default.html Net carry .html 0.55

Swift.html Net carry .html 0.12

Search.html Compile.asp 0.06

100

90

80

70

60

50

40

30

20

10

0

A
1

.h
tm

l

A
2

.h
tm

l

C
o

m
p

il
e

.a
s
p

S
a

m
p

le

.a
s
p

B1.htmlB2.html VAT. html C1html

 Clone percent (%)
Static web pages

 Clone percent (%)

Dynamic web pages

Code.html Sample.asp 0.05

Figure 10: This chart measure comparison of

clone percentage.

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 722

IJSER © 2015
http://www.ijser.org

IJSER

Table 9 : Performance measure to time taken of clone
detection

 Clone detection
 time

Name of the webpage(s) (in seconds)

B1.html A1.html 0.58

B2.html A2.html 0.10

VAT.html Compile.asp 0.05

C1.html Sample.asp 0.03

Fig. 11 gives information about the clone detection
percentage of static and dynamic web page.

Clone detection time (in seconds)

0.7

0.6

0.5

0.4 Clone detection
0.3 time (in seconds)
0.2

0.1

0

A
1

.h
tm

l
A

2
.h

t
m

l
C

o
m

p
il

e

.a
s
p

S
a

m
p

le

. a s p

B1.htmlB2.htmlVAT. html C1. html

Figure 11: This chart measures clone detection time (In

seconds).

5. CONCLUSION
Code clone detection is an art of detecting the content
similarity between the programs or WebPages. An attempt is
made to design a method called “CCDT Code Clone
Detection” for both static and dynamic WebPages. It is based
on levenshtein’s approach. This method comprises some steps
like, parsing & analysis, tree construction, code similarity
measure and clone detection. Experiments are carried out with
open source websites and WebPages created by some
volunteers. Experimental results are recorded and are showing
the better detection rate. Future research on Web data
extraction focuses on comparing the contents appearing on the
page as well as the code to measure the standard and
originality of the web page. However, they are redesigned or
applied in a different sequence and scenario to solve key
issues in page-level data extraction and comparison to the
code of web site and its contents to find the fake and the real.
The System can also be enhanced work to detect the script
injection and projected towards the detection of malwares
attached to web pages that harms the user’s machine and acts
as a spy ware and sends the information of the end user to the
attacker. These systems are still in research to prevent the
attackers. It is planned to exploit the results of the clone
mining method to support web application reengineering
activities.

6. REFERENCES
[1] Aversano, L., Canfora, G., De Lucia, A., and Gallucci,

P., 2001. Web Site Reuse: Cloning and Adapting. Proc.
Of 3rd International Workshop on Web Site Evolution,
Florence, Italy, IEEE CS Press, pp. 107-111.

[2] Chang C.-H. and S.-C. Lui, “IEPAD: Information Extraction

Based on Pattern Discovery,” Proc. Int’l Conf.
World Wide Web (WWW-10), pp. 223-231, 2001.

[3] Cloning http://msdn.microsoft.com/en-

us/library/hh205279.aspx

[4] De Lucia, A., Scanniello, G., and Tortora, G.,

2004."Identifying Clones in Dynamic Web Sites Using
Similarity Thresholds," Proc. Intl. Conf. on Enterprise
Information Systems (ICEIS'04), pp.391-396.

[5] Daniel B, D. Dig, K. Garcia, and D. Marinov,

“Automated Testing of Refactoring Engines,” Proc. Sixth
Joint Meeting European Software Eng. Conf. and ACM
SIGSOFT Symp. The Foundations of Software Eng., pp.
185-194, 2007.

[6] Dig D, and R. Johnson, “The Role of Refactorings in

API Evolution,” Proc. 21st IEEE Int’l Conf. Software
Maintenance,pp. 389-398, 2005.

[7] Eclipse.org, “Eclipse Project,”at http://www.eclipse.org,

2011.

[8] EmbarcaderoTechnologies,“JBuilder,”

http://www.codegear.com/br/products/jbuilder, 2011.

[9] “JDT Core Component,” Eclipse.org,

http://www.eclipse.org/ jdt/core/, 2011.

[10] Fowler M., Refactoring: Improving the Design of

Existing Code. Addison-Wesley Longman Publishing
Co., 1999.

[11] Goodenough J.B. and S.L. Gerhart, “Toward a Theory of

Test Data Selection,” SIGPLAN Notes, vol. 10, pp. 493-
510, Apr. 1975.

[12] Gligoric M, T. Gvero, V. Jagannath, S. Khurshid, V.

Kuncak, and D. Marinov, “Test Generation through
Programming in UDITA,” Proc. 32nd Int’l Conf.
Software Eng., vol. 1, pp. 225-234, 2010.

[13] Hoffman D.M, D. Ly-Gagnon, P. Strooper, and H.-Y.

Wang, “Grammar-Based Test Generation with YouGen,”
Software: Prac- tice and Experience, vol. 41, pp. 427-
447, Apr. 2011.

[14] Jackson D., I. Schechter, and H. Shlyahter, “Alcoa: The

Alloy Constraint Analyzer,” Proc. 22nd Int’l Conf.
Software Eng., pp. 730-733, 2000.

[15] Jin W, A. Orso, and T. Xie, “Automated Behavioral

Regression Testing,” Proc. 23rd Int’l Conf. Software
Testing, Verification and Validation, pp. 137-146, 2010.

[16] Kushmerick, D. Weld, and R. Doorenbos, “Wrapper

Induction for Information Extraction,” Proc. 15th Int’l
Joint Conf. Artificial Intelligence (IJCAI), pp. 729-735,
1997.

[17] Muslea I., S. Minton, and C. Knoblock, “A Hierarchical

Approach to Wrapper Induction,” Proc. Third Int’l Conf.
Autonomous Agents (AA ’99), 1999.

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 723

IJSER © 2015
http://www.ijser.org

IJSER

[18] Mens T. and T. Tourwe , “A Survey of Software

Refactoring,” IEEE Trans. Software Eng., vol. 30, no. 2,
pp. 126-139, Feb. 2004.

[19] Demeyer. S, Mens T, and D. Janssens, “Formalising

Behaviour Preserving Program Transformations,” Proc.
First Int’l Conf. Graph Transformation, pp. 286-301,
2002.

[20] Marinov D and S. Khurshid, “TestEra: A Novel

Framework for Automated Testing of Java Programs,”
Proc. IEEE 16th Int’l Conf. Automated Software Eng.,
pp. 22-34, 2001.

[21] Opdyke W.F, “Refactoring Object-Oriented

Frameworks,” PhD dissertation, Univ. of Illinois at
Urbana-Champaign, 1992.

[22] Overbey J.L and R.E. Johnson, “Differential

Precondition Check-ing: A Lightweight, Reusable

Analysis for Refactoring Tools,” Proc. 26th IEEE/ACM
Int’l Conf. Automated Software Eng., pp. 303-312,

[23] Refactoring http://www.informit.com/articles/article.aspx

[24] Simon K and G. Lausen, “ViPER: Augmenting

Automatic Information Extraction with Visual
Perceptions,” Proc. Int’l Conf. Information and
Knowledge Management (CIKM), 2005.

[25] Sun Microsystems, “NetBeans IDE,”

http://www.netbeans.org/,2011.

[26] Scha fer M, M. Verbaere, T. Ekman, and O. Moor,

“Stepping Stones over the Refactoring Rubicon,” Proc.
23rd European Conf. Object-Oriented Programming, pp.
369-393, 2009.

[27] Moor O. de, Scha fer M and “Specifying and

Implementing Refactorings,” Proc. 25th ACM
Int’l Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 286-301, 2010.

[28] Ekman T. Scha fer M, and O. de Moor, “Challenge

Proposal: Verification of Refactorings,” Proc. Third
Workshop Programming Languages Meets Program
Verification, pp. 67-72, 2008.

[29] Gheyi. R Soares G, D. Serey, and T. Massoni, “Making

Program Refactoring Safer,” IEEE Software, vol. 27, no.
4, pp. 52-57, July/ Aug. 2010.

[30] Mongiovi M., Soares G, and R. Gheyi, “Identifying

Overly Strong Conditions in Refactoring
Implementations,” Proc. Conf. Software Maintenance,
pp. 173-182, Sept. 2011.

[31] Silva L, A. Sampaio, and Z. Liu, “Laws of Object-

Orientation with Reference Semantics,” Proc. Sixth
IEEE Int’l Conf. Software Eng. And Formal Methods,
pp. 217-226, 2008.

[32] Moor O. de, Scha fer M, T. Ekman, and “Sound and

Extensible Renaming for Java,” Proc. 23rd ACM
SIGPLAN Conf. Object Oriented Programming,
Systems, Languages, and Applications, pp. 277-294,
2008.

[33] Tokuda L and D. Batory, “Evolving Object-Oriented

Designs with Refactoring,” Automated Software Eng.,
vol. 8, pp. 89-120, Jan.2001.

[34] Sourcemaking

http://sourcemaking.com/refactoring/introduction-
to- refactoring

[35] DOM Tree Algorithm

:http://dbs.snu.ac.kr/papers/xsym09.pdf.

[36] Levenshtein Edit Distance Algorithm:

http://www.levenshtein.net/ levenshtein measure
http://en.wikibooks.org/wiki/Algorithm_Implementation/
Strings/Levenshtein_distance.

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015
ISSN 2229-5518 724

IJSER © 2015
http://www.ijser.org

IJSER

http://sourcemaking.com/refactoring/introduction-to-refactoring
http://sourcemaking.com/refactoring/introduction-to-refactoring
http://sourcemaking.com/refactoring/introduction-to-refactoring
http://sourcemaking.com/refactoring/introduction-to-refactoring
http://dbs.snu.ac.kr/papers/xsym09.pdf
http://dbs.snu.ac.kr/papers/xsym09.pdf

